Dada la volatilidad actual de los mercados locales e internacionales, y las diferentes crisis internas que atraviesan los países, muchas personas han variado el cumplimiento de los diferentes pagos de créditos. Es así que hoy nos encontramos en un escenario donde la sensibilidad al default es mucho mayor y por ende cobran mayor importancia las técnicas de riesgo crediticio.
CAPACITACIONES
Especialización en Credit Scoring
El precio original era: $3,140.00.$593.46El precio actual es: $593.46.
Pre-requisitos:
Profesor: Johnny Pantoja
19:30 - 22:30
20:30 - 23:30
20:30 - 23:30
21:30 - 00:30
Características
Clases en Vivo
Plataforma E-Learning
Asesoría Académica
Aprende Haciendo
Certificación
Soporte Técnico
Lo que vas a obtener con este curso
Objetivo General: Planificar, diseñar e implementar el end to end de un modelo de riesgo crediticio, entendiendo todo el ciclo de vida desde la cadena de valor del negocio, la importancia de los datos, las reglas de negocio, las diferentes metodologías para el modelo, así como la productivización del mismo.
Objetivos Específicos:
- Diseñar una arquitectura tecnológica flexible para la implementación del modelo en función de la cadena de valor.
- Identificar mediante un gobierno de datos adecuado las reglas de negocio para un adecuado control de información.
- Definir la mejor forma de extracción de datos (en función a arquitectura) para generar eficiencia en los procesos de carga masiva del modelo.
- Crear las metodologías adecuadas para implementar un modelo eficiente a través del cálculo de PD, EAD,LGD y el impacto de la pérdida esperada y no esperada.
- Poder productivizar el modelo desarrollado de tal forma que pueda darle un uso funcional.
- Realizar calibraciones y validación del modelo para asegurar su consistencia y fiabilidad.
Malla Curricular:
Introducción a la gestión del Riesgo Crediticio y Modelos de Scoring
Objetivo: Entender e identificar los principales conceptos para la implementación de un modelo de riesgo crediticio, así como su utilidad dependiendo del modelo de negocio.
- Definición del Riesgo Crediticio
- Los tipos de modelos crediticios en entidades no Financieras.
- Los modelos crediticios de acuerdo con normativas de Basilea y SBS.
- Tipos de Scoring: Admisión, seguimiento, cobranza, castigo
- Tipos de variables: Edad, ingresos, deudas, etc. La importancia del tipo de variable de acuerdo con el modelo de negocio.
Ciclo de vida integral de un modelo de Riesgo Crediticio
Objetivo: Entender toda la cadena de valor de un modelo de riesgo crediticio desde que se ingesta la data hasta que se hace funcional, de acuerdo con la cadena de valor de la organización.
- Como entender la cadena de valor de una organización.
- Gobierno de datos y trazabilidad. Definiciones previas a diseñar un modelo.
- Metodologías de ingesta de datos de acuerdo con el nivel de la organización.
- Definición de las reglas de negocio: Como implementarlas.
- ¿Cómo se implementa el modelo luego de crearlo? Uso de Apis, web services, motores de reglas de negocio para la agilizar de la calibración y uso funcional del modelo.
Arquitectura de un modelo
Objetivo: Aprender a diseñar la arquitectura integral del modelo alineado a la cadena de valor del proceso de negocio.
- Primeros pasos para el diseño de una arquitectura de un modelo
- Introducción a la arquitectura de microservicios.
- Como realizar una arquitectura paramétrica y flexible.
- Como crear un motor de reglas paramétricos en Apis.
- Introducción a la interoperabilidad y contenedores.
- Cambios dinámicos en el modelo de acuerdo con coyuntura actual: Caso COVID19.
Análisis exploratorio y selección de la muestra
Objetivo: Aprender los conceptos estadísticos descriptivos para identificar la muestra ideal para el diseño del modelo.
- Preparación de la información. ¿Con cuanta data histórica debemos contar?
- Definición de data mala, buena. ¿Cómo identificar un malo?
- Ventana de observación. ¿Cuánto tiempo se debe observar la data de muestra para asegurar una desviación óptima en el modelo?
- Validación de la data. Escenarios descriptivos.
- Tratamiento de rechazos sobre umbrales no aceptados.
- Carácterísticas de la población objetivo
- Características del producto
- Cosechas RCC
- Análisis de unicidad
Desarrollo del modelo
Objetivo: Desarrollar el modelo a través de las metodologías de riesgo definidas en clase.
- Segmentación
- Feature engineering
- Tratamiento de missings tomando en cuenta la tipología de los modelos
- Tratamiento de outliers tomando en cuenta la tipología de los modelos
- Convoluciones
- Estabilidad
- Tratamiento por tipo de variable
- Cómo funciona la regresión logística
- Cómo interpretar las pruebas de hipótesis
- Bootstrap
- Comparación y selección entre modelos
- Interpretabilidad
- Técnicas para incorporar efecto covid
- Análisis Bivariante: Covarianza, correlación, diagramas de caja.
- Que es el WOE y el IV. Casos de uso e impacto de las variables en el modelo.
- Generación de la PD a través de regresión Logit.
Valoración y validación del modelo, aplicación del Credit Scoring
Objetivo: Validar el modelo creado para asegurar la sensibilidad de los cálculos.
- Calculo de Bondad de Ajuste. Test de normalidad. Contraste de hipótesis.
- Prueba de Kolmogórov-Smirnov
- ¿Qué es el coeficiente de Gini? Metodología actual. Casos de uso.
- Análisis y pesos de las variables.
- Puntos de corte
- Vinculación con las pautas crediticias
- Calibración
Calculo de Perdida Esperada
Objetivo: Desarrollar el concepto de perdida esperada y el impacto en los indicadores de la organización, así como sus componentes internos.
- Definición del Loss Given Default. Casos de Uso
- Análisis y benchmarks del LGD. Casos atípicos de mercado.
- Definición del EAD. Metodologías para el cálculo del EAD.
- Bencharmk de mercado y casos de uso alterno del EAD.
- Definición del portafolio de perdida esperada e impacto en la organización.
- El impacto de la gestión de la IFRS9 en las provisiones de la banca.
- Que es la perdida inesperada?. Como impacta dentro de la gestión de Riesgos y Cobranzas. Casos de uso.
- Usos de la LGD en los procesos del banco
- Tipos de casos abiertos y cerrados en LGD
- Tratamiento de los casos abiertos
- LGD Workout
- Selección del universo para modelamiento LGD
- Selección de variables
- Consistencia LGD y etapa de admisión
- LGD TTC
- EAD TTC
- Al menos la LGD y EAD tienen que tener casos aplicados de todo esto, no puede quedar como ejemplo de casos de uso
Modelos de Supervivencia y Machine Learning
Objetivo: Aprender a diseñar y crear modelos utilizando herramienta de machine Learning y análisis de supervivencia para evaluar el tiempo de vida hasta caer en default de una cartera.
- ¿Qué es un análisis de Supervivencia? Casos prácticos y metodologías.
- Introducción al estimado Kaplan Meier. Ejemplos y metodologias. Como determinar el periodo de vida.
- Definición de Cox Proportional Hazard. Ejemplos aplicativos y escenarios locales.
- Construcción de algoritmo de machine learning
- Ventajas y desventajas de ML en los problemas de credit scoring
- ML y los reguladores
- Tratamietno de variables para ML
- FE ML
- HP y optimización
- Unboxing
- Cómo se calibra un ML
- Implementación de ML
Calibración de un modelo: Stress Test y BackTesting
Objetivo: Aprender a realizar un seguimiento del modelo mediante metodologias de stress test y backtesting para evaluar las variaciones constantes de acuerdo a la volatilidad del mercado.
- ¿Por qué se debe calibrar un modelo? ¿Con que frecuencia se debe realizar una calibración?
- Introducción al concepto de Stress Test. Casos en cartera de Credito y Mercado.
- Como realizar un ejercicio de Stress bajo un set de variables de modelo. Shockeo de variables.
- Parametrización de Stress Test.
- Introducción al BackTesting. ¿Porque es importante dentro de la calibración de un modelo?
- Como implementar un adecuado seguimiento de modelo. Escenarios bajo un contexto actual.
- Calibración de PD
- Calibración LGD
- Calibración EAD
- RD, PSI, Vasicek, Drivers
- Moras tempranas
- EWS
Taller: Construyendo un modelo de scoring a elección
Objetivo: Construiremos un modelo en vivo de acuerdo a la decisión del foro: Admisión, seguimiento, cobranza o castigo, bancario o no bancario. Evaluar al alumno sobre los temas tratados.
- Realizaremos un taller didáctico donde con los alumnos construiremos un modelo integral que cobertura todos los temas vistos en clase.
- Se evaluará al alumno mediante un caso dejado al inicio del curso que debe presentar, donde debe implementar un modelo integral, desde la cadena de valor del negocio, arquitectura, ingesta de data diseño del modelo y productivización bajo una arquitectura paramétrica.
Malla Curricular
Preguntas Frecuentes
Primeros pasos en la plataforma
2 artículos
¿Necesito tener una cuenta para poder matricularme en una capacitación?
Lo ideal es crear una cuenta en nuestra web y luego realizar tu compra, pero no es mandatorio. Si desea puede pagar y matricularse en cualquiera de nuestras capacitaciones y después de la compra, automáticamente se le habrá creado un usuario.
Ya me matriculé, ¿cuáles son los siguientes pasos?
Una vez matriculado en una de nuestras capacitaciones, le llegará un correo de confirmación con los accesos. De tener algún inconveniente deberá escribir a: esmeralda.verde@dmc.pe para recibir orientación y pronta solución.
Capacitaciones - Cursos - Especializaciones
1 artículos
¿Todos los cursos son 100% en vivo y online?
Sí, a menos que hayas comprado alguna membresía de DMC Play; todos nuestras capacitaciones: cursos, bootcamps, especializaciones, diplomas y lo incluido en nuestras Membresías DataPro son completamente online y 100% en vivo.
Resolución de problemas
1 artículos
No puedo ingresar a la plataforma, rechaza mi contraseña y usuario
Para cualquier problema con el usuario y contraseña de la plataforma deberás contactarte al siguiente correo y solicitar la solución: noel.yzaguirre@dmc.pe
Inscripciones - pagos - membresías
2 artículos
Tengo dudas y necesito ayuda con mi Membresía DataPro
Para recibir ayuda sobre el uso, acceso y aprovechamiento de tu Membresía DataPro, podrás escribirle a nuestra asesora: claudia.trujillo@dmc.pe, y ella podrá ayudarte con tus dudas.
Ya me inscribí en una Membresía DataPro, ¿qué sigue?
Deberás armar tu horario de estudios para que puedas aprovechar al máximo la membresía. Los accesos llegarán a tu correo electrónico y podrás así completar tus inscripciones. Recuerda revisar a qué tienen acceso según tu membresía adquirida.
Obtenga una certificación reconocida por las empresas y la industria nacional y extranjera
Miles de estudiantes satisfechos han logrado sus metas gracias a nuestra metodología de estudio
Abre tu cuenta GRATIS y aprovecha todo el contenido que tenemos para ti y empieza ahora a darle un nuevo impulso a tu carrera profesional.
¿Tienes alguna consulta o inquietud? talvez deseas consultar a uno de nuestros asesores
Hablar con un asesorCONTINÚA TU CARRERA EN DATOS
EXCEL AVANZADO
16/01/2025
El precio original era: $315.00.$34.02El precio actual es: $34.02.
EXCEL BÁSICO
30/01/2025
El precio original era: $315.00.$34.02El precio actual es: $34.02.
AUTOMATIZACIÓN CON POWER APPS Y POWER AUTOMATE
29/01/2025
El precio original era: $1,455.00.$157.14El precio actual es: $157.14.
POWER BI NIVEL 1
30/01/2025
El precio original era: $525.00.$56.70El precio actual es: $56.70.