Habilidades fundamentales de un Data Engineer - DMC Perú
Productos
Crear una cuenta
Diplomas

08/05/2024

En un mundo digitalizado, el manejo inteligente de los datos es esencial para el éxito empresarial. Un Data Engineer, juega un papel clave en el diseño y la implementación de sistemas de gestión de datos efectivos y eficientes.  ¿Qué hace un Data Engineer?  El Data Engineer es el profesional detrás de los pipelines de datos, asegurando su disponibilidad y mantenimiento.…

Habilidades fundamentales de un Data Engineer

En un mundo digitalizado, el manejo inteligente de los datos es esencial para el éxito empresarial. Un Data Engineer, juega un papel clave en el diseño y la implementación de sistemas de gestión de datos efectivos y eficientes. 

¿Qué hace un Data Engineer? 

El Data Engineer es el profesional detrás de los pipelines de datos, asegurando su disponibilidad y mantenimiento. Su labor abarca desde el desarrollo de sistemas de almacenamiento y manipulación de datos hasta la comprensión y análisis de algoritmos de ciencia de datos. 

Habilidades indispensables: 

  • Dominio de tecnologías: Un Data Engineer debe ser versado en una variedad de tecnologías, desde sistemas operativos como Windows y Linux, hasta lenguajes de programación como Python, R y Scala. 
  • Manejo de bases de datos: Experticia en manipulación de bases de datos es esencial, incluyendo conocimientos en SQL, NoSQL, MongoDB y Neo4j. 
  • Gestión de Big Data: La habilidad para manejar grandes volúmenes de datos es crucial. Herramientas como Hive, HBase y soluciones basadas en Hadoop son fundamentales en este aspecto. 
  • Conocimientos de Machine Learning: Aunque no necesariamente a nivel de un científico de datos, comprender los algoritmos de Machine Learning es importante para el Data Engineer. 
  • Comunicación efectiva: Sólidas habilidades de comunicación son esenciales para explicar resultados y procesos a colegas y superiores, incluso aquellos sin experiencia técnica. 
  • Despliegue y APIs: El Data Engineer debe entender las etapas de puesta en producción y escribir APIs para facilitar el acceso a los datos y modelos de Machine Learning. 

Comienza tu viaje como Data Engineer: 

Si estás listo para convertirte en un experto Data Engineer, nuestro Diploma Data Engineer es el camino perfecto. Inscríbete ahora y obtén las habilidades necesarias para triunfar en el mercado laboral actual. 

Descubre más sobre el Diploma Data Engineer aquí. 

No olvides que la profesión de Data Engineer está en constante evolución, por lo que mantenerse actualizado es clave para el éxito a largo plazo. 

Diplomas

08/05/2024

Comparta en:

También te puede interesar

El Camino Correcto para ser un Data Scientist

23/04/2025

Muchos me preguntan: ¿Cómo doy el salto de Data Analyst a Data Scientist?
¿Hay un curso? ¿Una maestría? ¿Una fórmula secreta?

La verdad es que hay muchas rutas, pero hay algo en común en todas las historias de quienes lo logran: curiosidad, disciplina y conexión con el negocio.

Aquí te dejo los 5 pasos más claros para construir ese camino, y dos historias reales de personas que lo recorrieron —cada uno a su manera:

1. Aprende Python (o R)

Como analista quizás manejas bien Excel, Power BI o SQL. Pero para crear modelos predictivos necesitas ir un paso más allá: programar.
Python es hoy el más popular. Tiene librerías como pandas, scikit-learn y matplotlib que te permiten analizar, modelar y visualizar datos de forma poderosa.
¿No sabes por dónde empezar? Aprende con proyectos pequeños que te emocionen.


2. Domina fundamentos de estadística y machine learning

No necesitas volverte experto en deep learning de la noche a la mañana. Pero sí entender bien cosas como regresión, árboles de decisión, clustering y cómo evaluar modelos (precisión, recall, AUC, etc.).
Esa base te da criterio y confianza.


3. Conecta con el negocio

Un buen Data Scientist no solo sabe modelar: entiende el “para qué”.
En cada reunión, pregunta:

“¿Qué problema estamos resolviendo?”
“¿Qué decisión se tomará con este modelo?”
Ese chip te transforma de técnico a estratega.


4. Aprende a comunicar tus hallazgos

Los datos hablan, sí. Pero tú debes traducirlos.
Hazlo simple. Usa ejemplos. Cuenta una historia.
Si un gerente no técnico entiende lo que hiciste y lo usa para decidir… misión cumplida.


5. Toma iniciativa

No esperes que te digan “haz un modelo”.
Observa procesos, encuentra puntos de mejora y propón soluciones.
El que propone, lidera.

🌟 Ahora, dos historias reales de transformación:

📘 Juan Carlos – De psicólogo a líder de ciencia de datos en educación

Graduado en Psicología, trabajaba con pacientes con trastornos mentales. Pero algo lo llamaba más: la estadística.
Hizo una maestría, empezó a analizar grandes bases de datos en salud, y luego en el Ministerio de Educación.
En Innova Schools fundó el área de Data desde cero y diseñó su primer modelo de churn… ¡sin que la empresa estuviera 100% preparada tecnológicamente!
Todo empezó con una pasión por entender el comportamiento con datos.


📗 Douglas – De economista curioso a Head de Analytics en una corporación regional

No sabía R ni Python, pero se metió a una datatón por curiosidad. Su equipo ganó. ¿La razón? Entendieron el problema mejor que nadie.
Ese evento le cambió la vida.
En Alicorp aprendió R bajo presión, lideró proyectos y armó su primer equipo.
Hoy, es Head of Data & Analytics, y su filosofía es clara:

“Los datos deben servir para tomar decisiones reales, en problemas reales.”
¿Todo comenzó? Cuando dijo: “yo quiero aprender eso”.

Muchos me preguntan: ¿Cómo doy el salto de Data Analyst a Data Scientist?
¿Hay un curso? ¿Una maestría? ¿Una fórmula secreta?

La verdad es que hay muchas rutas, pero hay algo en común en todas las historias de quienes lo logran: curiosidad, disciplina y conexión con el negocio.

Aquí te dejo los 5 pasos más claros para construir ese camino, y dos historias reales de personas que lo recorrieron —cada uno a su manera:

1. Aprende Python (o R)

Como analista quizás manejas bien Excel, Power BI o SQL. Pero para crear modelos predictivos necesitas ir un paso más allá: programar.
Python es hoy el más popular. Tiene librerías como pandas, scikit-learn y matplotlib que te permiten analizar, modelar y visualizar datos de forma poderosa.
¿No sabes por dónde empezar? Aprende con proyectos pequeños que te emocionen.


2. Domina fundamentos de estadística y machine learning

No necesitas volverte experto en deep learning de la noche a la mañana. Pero sí entender bien cosas como regresión, árboles de decisión, clustering y cómo evaluar modelos (precisión, recall, AUC, etc.).
Esa base te da criterio y confianza.


3. Conecta con el negocio

Un buen Data Scientist no solo sabe modelar: entiende el “para qué”.
En cada reunión, pregunta:

“¿Qué problema estamos resolviendo?”
“¿Qué decisión se tomará con este modelo?”
Ese chip te transforma de técnico a estratega.


4. Aprende a comunicar tus hallazgos

Los datos hablan, sí. Pero tú debes traducirlos.
Hazlo simple. Usa ejemplos. Cuenta una historia.
Si un gerente no técnico entiende lo que hiciste y lo usa para decidir… misión cumplida.


5. Toma iniciativa

No esperes que te digan “haz un modelo”.
Observa procesos, encuentra puntos de mejora y propón soluciones.
El que propone, lidera.

🌟 Ahora, dos historias reales de transformación:

📘 Juan Carlos – De psicólogo a líder de ciencia de datos en educación

Graduado en Psicología, trabajaba con pacientes con trastornos mentales. Pero algo lo llamaba más: la estadística.
Hizo una maestría, empezó a analizar grandes bases de datos en salud, y luego en el Ministerio de Educación.
En Innova Schools fundó el área de Data desde cero y diseñó su primer modelo de churn… ¡sin que la empresa estuviera 100% preparada tecnológicamente!
Todo empezó con una pasión por entender el comportamiento con datos.


📗 Douglas – De economista curioso a Head de Analytics en una corporación regional

No sabía R ni Python, pero se metió a una datatón por curiosidad. Su equipo ganó. ¿La razón? Entendieron el problema mejor que nadie.
Ese evento le cambió la vida.
En Alicorp aprendió R bajo presión, lideró proyectos y armó su primer equipo.
Hoy, es Head of Data & Analytics, y su filosofía es clara:

“Los datos deben servir para tomar decisiones reales, en problemas reales.”
¿Todo comenzó? Cuando dijo: “yo quiero aprender eso”.

blog

23/04/2025

Comparta en:

26/08/2024

La Ciberseguridad en la Era Digital: Protegiendo el Futuro

El Auge de la CiberseguridadLa ciberseguridad se ha convertido en una necesidad imperiosa en el mundo interconectado de hoy. La expansión de la digitalización y la proliferación de tecnologías emergentes han aumentado exponencialmente el número de puntos vulnerables que los atacantes pueden explotar. Esta situación requiere que las organizaciones fortalezcan sus medidas de seguridad para…

Se parte de la mayor comunidad de profesionales
del Perú y Latinoamérica

Crea una cuenta GRATIS

Datos