Muchos me preguntan: ¿Cómo doy el salto de Data Analyst a Data Scientist?
¿Hay un curso? ¿Una maestría? ¿Una fórmula secreta?
La verdad es que hay muchas rutas, pero hay algo en común en todas las historias de quienes lo logran: curiosidad, disciplina y conexión con el negocio.
Aquí te dejo los 5 pasos más claros para construir ese camino, y dos historias reales de personas que lo recorrieron —cada uno a su manera:
1. Aprende Python (o R)
Como analista quizás manejas bien Excel, Power BI o SQL. Pero para crear modelos predictivos necesitas ir un paso más allá: programar.
Python es hoy el más popular. Tiene librerías como pandas
, scikit-learn
y matplotlib
que te permiten analizar, modelar y visualizar datos de forma poderosa.
¿No sabes por dónde empezar? Aprende con proyectos pequeños que te emocionen.
2. Domina fundamentos de estadística y machine learning
No necesitas volverte experto en deep learning de la noche a la mañana. Pero sí entender bien cosas como regresión, árboles de decisión, clustering y cómo evaluar modelos (precisión, recall, AUC, etc.).
Esa base te da criterio y confianza.
3. Conecta con el negocio
Un buen Data Scientist no solo sabe modelar: entiende el “para qué”.
En cada reunión, pregunta:
“¿Qué problema estamos resolviendo?”
“¿Qué decisión se tomará con este modelo?”
Ese chip te transforma de técnico a estratega.
4. Aprende a comunicar tus hallazgos
Los datos hablan, sí. Pero tú debes traducirlos.
Hazlo simple. Usa ejemplos. Cuenta una historia.
Si un gerente no técnico entiende lo que hiciste y lo usa para decidir… misión cumplida.
5. Toma iniciativa
No esperes que te digan “haz un modelo”.
Observa procesos, encuentra puntos de mejora y propón soluciones.
El que propone, lidera.
🌟 Ahora, dos historias reales de transformación:
📘 Juan Carlos – De psicólogo a líder de ciencia de datos en educación
Graduado en Psicología, trabajaba con pacientes con trastornos mentales. Pero algo lo llamaba más: la estadística.
Hizo una maestría, empezó a analizar grandes bases de datos en salud, y luego en el Ministerio de Educación.
En Innova Schools fundó el área de Data desde cero y diseñó su primer modelo de churn… ¡sin que la empresa estuviera 100% preparada tecnológicamente!
Todo empezó con una pasión por entender el comportamiento con datos.
📗 Douglas – De economista curioso a Head de Analytics en una corporación regional
No sabía R ni Python, pero se metió a una datatón por curiosidad. Su equipo ganó. ¿La razón? Entendieron el problema mejor que nadie.
Ese evento le cambió la vida.
En Alicorp aprendió R bajo presión, lideró proyectos y armó su primer equipo.
Hoy, es Head of Data & Analytics, y su filosofía es clara:
“Los datos deben servir para tomar decisiones reales, en problemas reales.”
¿Todo comenzó? Cuando dijo: “yo quiero aprender eso”.